Type IV collagen induces matrix metalloproteinase 2 activation in HT1080 fibrosarcoma cells.
نویسندگان
چکیده
Matrix metalloproteinase 2 (MMP-2) activation has been described as a "master switch" which triggers tumor spread and metastatic progression. We show here that type IV collagen, a major component of basement membranes, promotes MMP-2 activation by HT1080 cells. When plated on plastic, HT1080 cells constitutively processed the 66-kDa pro-MMP-2 into a 62-kDa intermediate activated form, most probably through a membrane type (MT) 1 MMP-dependent mechanism. In the presence of type IV collagen, part of this intermediate form was further processed to fully activated 59-kDa MMP-2. This activation was prevented by tissue inhibitor of MMP (TIMP)-2 and a broad-spectrum hydroxamic acid-based synthetic MMP inhibitor (GI129471). Type IV collagen-mediated pro-MMP-2 activation did not involve either a transcriptional modulation of MMP-2, MT1-MMP, or TIMP-2 expression nor any alteration of MT1-MMP protein synthesis or processing. An inverse relationship between MMP-2 activation and the concentration of secreted TIMP-2 was observed. This is consistent with our previous report that TIMP-2 degradation is probably linked to the MT1-MMP-dependent MMP-2 activation mechanism. Because invasive tumor cells must breach basement membranes at different steps of the metastatic dissemination, the ability of HT1080 cells to activate pro-MMP-2 in the presence of type IV collagen might represent a key regulatory mechanism for the acquisition of an invasive potential.
منابع مشابه
Signal-Related Kinase Activation and Cell Migration Protein/Extracellular Collagen-Dependent Mitogen-Activated Membrane Type 1 Matrix Metalloproteinase Regulates
Mitogen-activated protein kinase-extracellular signal-related kinase (ERK) kinase 1 (MEK1)/ERK signaling has been implicated in the regulation of tumor cell invasion and metastasis. Migration of HT1080 cells on type I collagen was suppressed by the matrix metalloproteinase (MMP) inhibitors BB94 and tissue inhibitor of metalloproteinase (TIMP)-2 but not by TIMP-1. TIMP-2-specific inhibition sugg...
متن کاملMembrane type 1 matrix metalloproteinase regulates collagen-dependent mitogen-activated protein/extracellular signal-related kinase activation and cell migration.
Mitogen-activated protein kinase-extracellular signal-related kinase (ERK) kinase 1 (MEK1)/ERK signaling has been implicated in the regulation of tumor cell invasion and metastasis. Migration of HT1080 cells on type I collagen was suppressed by the matrix metalloproteinase (MMP) inhibitors BB94 and tissue inhibitor of metalloproteinase (TIMP)-2 but not by TIMP-1. TIMP-2-specific inhibition sugg...
متن کاملStimulation of matrix metalloproteinase-9 expression in human fibrosarcoma cells by synthetic matrix metalloproteinase inhibitors.
Enhanced expression and activation of matrix metalloproteinase-2 (MMP-2) and MMP-9 have been associated with tumor progression, invasion, and metastasis. The use of synthetic MMP inhibitors to block the proteolytic activity of these enzymes recently emerged as a potential therapeutic tool to treat cancer. In this study, we report that GI129471, a synthetic broad-spectrum MMP inhibitor, efficien...
متن کاملAnti-invasive activity of ursolic acid correlates with the reduced expression of matrix metalloproteinase-9 (MMP-9) in HT1080 human fibrosarcoma cells.
We examined the anti-invasive activity of ursolic acid (UA) on the highly metastatic HT1080 human fibrosarcoma cell line. UA reduced tumor cell invasion through a reconstituted basement membrane in a transwell chamber. A significant down-regulation of matrix metalloproteinase-9 [MMP-9; Mr 92,000 gelatinase/type IV collagenase (gelatinase B)] by UA was detected by Northern blot analysis. However...
متن کاملInhibitory effect of selenite on invasion of HT1080 tumor cells.
Selenium, an essential biological trace element, has been shown to reduce and prevent the incidence of cancer. Our previous studies have shown that selenite is involved in the chemoprevention of cancer and induction of apoptosis of cancer cells. In this study, we demonstrate that selenite also inhibits the invasion of tumor cells. Cancer cell invasion requires coordinated processes, such as cha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental cell research
دوره 261 2 شماره
صفحات -
تاریخ انتشار 2000